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Abstract The extended semantic realism (ESR) model recently worked out by one of the au-
thors embodies the mathematical formalism of standard (Hilbert space) quantum mechanics
in a noncontextual framework, reinterpreting quantum probabilities as conditional instead
of absolute. We provide here a Hilbert space representation of the generalized observables
introduced by the ESR model that satisfy a simple physical condition, propose a general-
ization of the projection postulate, and suggest a possible mathematical description of the
measurement process in terms of evolution of the compound system made up of the mea-
sured system and the measuring apparatus.

Keywords Quantum mechanics · Quantum probability · Projection postulate · Quantum
measurement theory

1 The ESR model

The extended semantic realism (ESR) model has been proposed by one of the authors to-
gether with other authors to show that, contrarily to a widespread belief, the mathematical
formalism of standard (Hilbert space) quantum mechanics (QM) can be embodied in a non-
contextual framework [1–3]. We refer to [4] for a detailed description of the ESR model and
only recall here some of its features that are needed in the following.

According to the ESR model, every physical system Ω is characterized by a set S of
states, a set O of generalized observables and a set E of microscopic properties.

Each state S ∈ S is operationally defined as a class of physically equivalent preparing
devices [5, 6]. Every preparing device π , when constructed and activated, performs a prepa-
ration of an individual example x of Ω (physical object), and one briefly says that “x is in
the state S” if π belongs to S.
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Each generalized observable A0 ∈ O is operationally defined as a class of physically
equivalent measuring apparatuses, and it is obtained in the ESR model by considering an
observable A of QM with set of possible values Ξ on the real line � and adding a further
outcome a0 ∈ �\Ξ (no-registration outcome of A0), so that the set of all possible values of
A0 is Ξ0 = Ξ ∪ {a0}.1

Finally, microscopic properties play the role of theoretical entities (hence, they have no
direct physical interpretation) and are such that, for every physical object x, every f ∈ E
either is possessed or it is not possessed by x, independently of any measurement proce-
dure. The set of microscopic properties possessed by a given physical object x defines its
microscopic state which also plays the role of a theoretical entity.

Let now B(�) be the σ -algebra of all Borel subsets of �. The set F0 of all macroscopic
properties of Ω is defined by

F0 = {(A0,X)|A0 ∈ O,X ∈ B(�)}, (1)

and the subset F ⊂ F0 is defined by

F = {(A0,X)|A0 ∈ O,X ∈ B(�), a0 /∈ X}. (2)

Then, one assumes that a bijective mapping ϕ : E → F exists. By using this assump-
tion one can provide a description of an idealized measurement of a macroscopic property
F = (A0,X) on a physical object x in the state S, that is supposed to be performed by a
dichotomic registering device which yields outcome yes if the value of A0 belongs to X, no
otherwise. Whenever F ∈ F one gets the fundamental equation of the ESR model

pt
S(F ) = pd

S(F )pS(F ), (3)

where pt
S(F ) is the overall probability that the measurement yield the yes outcome when F

is measured on x, pd
S(F ) is the probability that x be detected, and pS(F ) is the conditional

probability that the measurement yield the yes outcome when x is detected.
Equation (3) has been extensively discussed in [4]. We recall here that the detection prob-

ability pd
S(F ) does not depend on features of the measuring apparatus nor is influenced by

the environment because (3) applies to idealized measurements only (which are the counter-
part in the ESR model of the ideal first kind measurements of standard QM). The ESR model
assumes instead that pd

S(F ) depends on the microscopic properties possessed by x, because
these properties may be such that the no-registration outcome a0 occurs even if an idealized
measurement is performed. This assumption is introduced as a theoretical hypothesis that
can be confirmed or falsified by testing its empirical consequences, and is not based on an
underlying description (e.g., wave or particle) of physical objects.2

1One assumes here, for the sake of simplicity, that � \ Ξ is non-void. This assumption is not restrictive.
Indeed, if Ξ = �, one can choose a bijective Borel function f : � → Ξ ′ such that Ξ ′ ⊂ � and replace A by
f (A).
2It is interesting to note that a wave model has been recently provided according to which unfair sampling
occurs when considering a measurement process in which the measuring apparatus has a threshold [7]. We
have proven in [4] that an unconventional kind of unfair sampling occurs in the ESR model and explains
the predicted violation of Bell’s inequalities. Hence one may wonder whether also this unfair sampling can
be justified by using the foregoing wave model to describe the physical objects that are considered. But
the answer is negative, because no space of parameters (“hidden variables”) associated with the measuring
apparatuses occurs in the ESR model whenever idealized measurements are considered. The reader can refer
to [4] for a more detailed treatment of this topic and a brief comparison of the ESR model with the Växjö
interpretation of QM [8].



3264 Int J Theor Phys (2010) 49: 3262–3270

Making reference to (3), the basic assumption of the ESR model can be stated as follows.

Whenever S is a pure state, pS(F ) can be evaluated by using the same rules that yield the
probability of F in the state S according to QM.

The above assumption implies that the ESR model incorporates the mathematical formal-
ism of QM and its rules for calculating probabilities, but interprets such rules as providing
conditional (with respect to detection) instead of absolute probabilities. As a consequence,
the ESR model yields some predictions that are formally identical to those of QM but have a
different physical interpretation, and further predictions that differ also formally from those
of QM [3, 4, 9]. The ESR model thus constitutes a new theoretical scheme. At this stage,
however, the mathematical representation of the physical entities that are introduced in it is
only partial, and a formal treatment of the detection probabilities is lacking, though some
predictions on such probabilities can already be obtained. The next section will therefore be
devoted to start a research on these topics.

2 Hilbert Space Formalism for the ESR Model

According to the ESR model the probability pS(F ) in (3) can be evaluated associating the
physical system Ω with a (separable) complex Hilbert space H and representing every pure
state S of Ω by a unit vector of H or by a one-dimensional orthogonal projection operator,
as in QM. A generalized observable A0, instead, cannot be represented by a self-adjoint
operator on H , hence neither by a projection operator valued, or PV, measure. We intend
to show in this section that a simple Hilbert space representation of A0 can be given if A0

belongs to a special class of generalized observables, and that this representation leads to a
straightforward generalization of the projection postulate.

Let us firstly recall that the generalized observable A0 is obtained by considering an
observable A of QM and adding a no-registration outcome a0 to the set Ξ of all possible
outcomes of A (Sect. 1). Therefore, let us introduce the symbol ̂A to denote the self-adjoint
operator representing A in QM (the spectrum of which obviously coincides with Ξ ) and the
symbol P

̂A to denote the PV measure associated with ̂A by the spectral theorem, that is,

P
̂A : X ∈ B(�) �−→ P

̂A(X) ∈ L(H), (4)

where L(H) is the set of all orthogonal projection operators on H , ̂A = ∫ +∞
−∞ λdP

̂A
λ ,

∫ +∞
−∞ dP

̂A
λ = I , and, for every X ∈ B(�), P

̂A(X) = ∫

X
dP

̂A
λ .

Let us now come to A0. For the sake of simplicity, we assume here that A0 satisfies the
following condition.

C. The detection probability pd
S(F ) of a macroscopic property F = (A0,X) ∈ F depends on

A0 but not on X.

Because of condition C we can write pd
S(A0) in place of pd

S(F ). Hence we obtain from
(3)

pt
S((A0,X)) = pd

S(A0)pS((A0,X)). (5)

The probability pt
S(A0, {a0}) of getting the outcome a0 is instead given by

pt
S((A0, {a0})) = 1 − pd

S(A0). (6)
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Moreover, the overall probability that a measurement of a macroscopic property F =
(A0,X) ∈ F0 \ F on a physical object x in the state S yield the yes outcome is

pt
S((A0,X)) = pt

S((A0,X \ {a0})) + pt
S((A0, {a0})). (7)

Let S be a pure state represented by the unit vector |ψ〉. Then, we put pd
ψ(̂A) =: pd

S(A0).
Furthermore, if F = (A0,X) ∈ F , we get, because of the basic assumption of the ESR
model,

pS((A0,X)) = 〈ψ |P ̂A(X)|ψ〉. (8)

Hence (5) becomes

pt
S((A0,X)) = 〈ψ |pd

ψ(̂A)P
̂A(X)|ψ〉 (9)

and (6) becomes

pt
S((A0, {a0})) = 1 − pd

ψ(̂A) = 〈ψ |(1 − pd
ψ(̂A))I |ψ〉. (10)

In addition, let F = (A0,X) ∈ F0 \ F . Since P
̂A(X \ {a0}) = P

̂A(X), Equation (7) becomes

pt
S((A0,X)) = 〈ψ |((1 − pd

ψ(̂A))I + pd
ψ(̂A)P

̂A(X))|ψ〉. (11)

Equations (9)–(11) suggest one to associate with A0, for every unit vector |ψ〉 ∈ H , a map-
ping

T
̂A

ψ : X ∈ B(�) �−→ T
̂A

ψ (X) ∈ B(H), (12)

where B(H) denotes the set of all bounded linear operators on H , defined by setting

T
̂A

ψ ({a0}) = (1 − pd
ψ(̂A))I, (13)

and, for every X ∈ B(�),

T
̂A

ψ (X) =
{

pd
ψ(̂A)P

̂A(X) if a0 /∈ X

T
̂A

ψ ({a0}) + T
̂A

ψ (X \ {a0}) = (1 − pd
ψ(̂A))I + pd

ψ(̂A)P
̂A(X) if a0 ∈ X

. (14)

It follows immediately that, for every unit vector |ψ〉 ∈ H ,

(i) T
̂A

ψ (�) = I ;

(ii) for every X ∈ B(�), 0 ≤ T
̂A

ψ (X) ≤ I ;

(iii) T
̂A

ψ (
⋃

i Xi) = ∑

i T
̂A

ψ (Xi) for every disjoint sequence {Xi ∈ B(�)}i (where the series
converges in the weak topology of B(H)).

Hence, for every unit vector |ψ〉 ∈ H , T ̂A
ψ is a positive operator valued, or POV, measure.

Moreover the following commutativity property is satisfied,
for every X,Y ∈ B(�), T

̂A
ψ (X)T

̂A
ψ (Y ) = T

̂A
ψ (Y )T

̂A
ψ (X).

Because of the above properties the generalized observable A0 can be represented by the
family of (commutative) POV measures

{

T
̂A

ψ : X ∈ B(�) �−→ T
̂A

ψ (X) ∈ B(H)
}

|ψ〉∈H ,‖|ψ〉‖=1
. (15)
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Indeed, bearing in mind (9), (10) and (11), one immediately gets that the probability that the
outcome of a measurement of A0 on a physical object x in the state S represented by the
unit vector |ψ〉 belong to the Borel set X is given by

pt
S((A0,X)) = 〈ψ |T ̂A

ψ (X)|ψ〉, (16)

or, equivalently,

pt
S((A0,X)) = T r[WψT

̂A
ψ (X)] (17)

where Wψ = |ψ〉〈ψ |.3
The mathematical representation provided above naturally leads to inquire into the state

transformation induced by a nondestructive idealized measurement of a macroscopic prop-
erty associated with a generalized observable satisfying condition C. If one accepts that
measurements of this kind are minimally perturbing, one can assume that, if the state S of
a physical object x is pure, it is not altered whenever x is not detected, while it is modi-
fied according to standard QM rules whenever x is detected. These assumptions lead one to
introduce the following generalized projection postulate.

GPP. Whenever a nondestructive idealized measurement of a physical property F =
(A0,X) ∈ F0 is performed on a physical object x in a pure state S represented by the
unit vector |ψ〉 or, equivalently, by the one-dimensional projection operator Wψ = |ψ〉〈ψ |,
and the yes outcome is obtained, the state of x after the measurement is a pure state SF

represented by the unit vector

|ψF 〉 = T
̂A

ψ (X)|ψ〉
√

〈ψ |T ̂A†
ψ (X)T

̂A
ψ (X)|ψ〉

, (18)

or, equivalently, by the one-dimensional orthogonal projection operator

WψF
= T

̂A
ψ (X)WψT

̂A†
ψ (X)

T r[WψT
̂A†

ψ (X)T
̂A

ψ (X)]
. (19)

Furthermore, if the no outcome is obtained, Equations (18) and (19) still hold with � \ X in
place of X.

3If the representation of the generalized observables satisfying condition C introduced here is compared with
the representation of observables introduced by unsharp QM [10–15] two basic differences leap out.

(i) A generalized observable satisfying condition C is represented by a family of POV measures parame-
trized by the set of all vectors representing pure states, while an observable of unsharp QM is represented by
a single POV measure.

(ii) Only commutative POV measures appear in the representation of a generalized observable satisfying
condition C.

Difference (i) is especially relevant since it implies that the generalized observables introduced by the ESR
model do not coincide, in general, with the observables introduced by unsharp QM. This can be intuitively
explained by recalling that the occurrence of the no-registration outcome when measuring a generalized ob-
servable depends only on intrinsic features of the physical object that is considered (microscopic properties),
hence it neither depends on the measuring apparatus nor it has an unsharp source. Difference (ii) is less
relevant, because it depends on the fact that only idealized measurements are considered in the ESR model
(which correspond to sharp measurements in unsharp QM) and it would disappear in an unsharp extension of
the ESR model.
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GPP replaces the projection postulate, as stated in elementary textbooks and manuals
on QM, introducing two basic changes. Firstly, the operator T

̂A
ψ (X) takes the place of the

projection operator that appears in the projection postulate. Secondly, the term under square
root in (18) and the term in the denominator in (19) do not coincide with the probability
provided by (16) or (17).

In order to illustrate the content of GPP let us consider some particular cases.
(i) X = {a0}. If the measurement yields the yes outcome, then |ψF 〉 = |ψ〉, consistently

with our assumptions above.

(ii) a0 /∈ X. If the measurement yields the yes outcome, then |ψF 〉 = P
̂A(X)|ψ〉√

〈ψ |P ̂A(X)|ψ〉
, con-

sistently with our assumptions above.
(iii) a0 ∈ X. If the measurement yields the yes outcome, then |ψF 〉 = α|ψ〉+βP

̂A(X)|ψ〉,
where α and β are coefficients whose calculation is straightforward.

Summing up, we conclude that we have obtained in this section a Hilbert space repre-
sentation of a subclass of generalized observables in the ESR model which allows one to
predict probabilities of outcomes of measurements (see (16) and (17)) and states after mea-
surements (see (18) and (19)) whenever pure states only are considered.4 Of course, these
results demand a generalization to arbitrary generalized observables and mixed states, which
we will not undertake in this paper. We note, however, that our above formalism has been
adopted in order to facilitate this generalization.

3 Discrete Generalized Observables and the Measurement Process

We intend to show in this section that (16)–(19) can be rewritten in a form which is closer
to the corresponding equations of QM whenever discrete generalized observables satisfying
condition C are considered. We also want to show that GPP can be justified in this case
by introducing a suitable evolution of the physical system made up of the (microscopic)
physical object plus the (macroscopic) measuring apparatus.

Let therefore A0 be a generalized observable satisfying condition C and obtained from
a discrete observable A of QM represented by a self-adjoint operator ̂A whose spec-
trum is Ξ = {a1, a2, . . .}, which implies that the set of possible outcomes of A0 is Ξ0 =
{a0, a1, a2, . . .}. Let P

̂A
1 , P

̂A
2 , . . . be the (orthogonal) projection operators associated with a1,

a2, . . . , respectively, by the spectral decomposition of ̂A, and let us introduce, for every unit
vector |ψ〉 ∈ H , a set MA0

ψ = {M ̂A
ψk}k∈N0 of generalized measurement operators defined as

follows

M
̂A
ψ0 =

√

1 − pd
ψ(̂A)I, (20)

4GPP refers to nondestructive idealized measurements, hence one may wonder whether such kind of mea-
surements can be classified as ideal measurements of the first kind according to standard definitions in QM.
Let us therefore suppose that a first measurement of A0 is performed on a physical object x in the state S and
then repeated on x in the final state. If the first measurement yields outcome an �= a0, the second could yield
an as well as a0; if the first measurement yields outcome a0, the second could yield an �= a0 if the detection
probability of A0 in the state S is not 0. Strictly speaking, the measurement is not a first kind measurement.
It can be observed, however, that if the first measurement yields outcome an , the second can never yield
outcome am , with 0 �= m �= n. In this sense, we say that our measurement is a generalized measurement of
the first kind. Moreover, the outcome of the measurement determines the final state of the physical object x.
In this sense, we say that our measurement is a generalized ideal measurement. Summarizing, we say that our
nondestructive idealized measurements are generalized ideal measurements of the first kind.
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M
̂A
ψk =

√

pd
ψ(̂A)P

̂A
k (k ∈ N) (21)

(note that all the operators in MA0
ψ are linear, bounded, self-adjoint and positive; moreover,

MA0
ψ is complete because

∑

k∈N0
M

̂A†
ψkM

̂A
ψk = I , and commutative, because, for every k, l ∈

N0, [M ̂A
ψk,M

̂A
ψl] = 0). By using the operators in MA0

ψ the overall probability that a physical
object x in the state S represented by the unit vector |ψ〉 yield outcome ak (k ∈ N0) whenever
A0 is measured on it is given by

pt
S((A0, {ak})) = 〈ψ |M ̂A†

ψkM
̂A
ψk|ψ〉 (22)

because of (16), or, equivalently, by

pt
S((A0, {ak})) = Tr[WψM

̂A†
ψkM

̂A
ψk] (23)

because of (17). Moreover, if the measurement yields outcome ak , the state of x after the
measurement is represented by the unit vector

|ψk〉 = M
̂A
ψk|ψ〉

√

〈ψ |M ̂A†
ψkM

̂A
ψk|ψ〉

(24)

because of (18) or, equivalently, by the one-dimensional orthogonal projection operator

Wk = M
̂A
ψkWψM

̂A†
ψk

T r[WψM
̂A†
ψkM

̂A
ψk]

(25)

because of (19). The term under square root in (24) and the term in the denominator in (25)
now coincide with the probability provided by (22) or (23).

Equation (25) implies, in particular, that if the measurement is nonselective the final state
of x is a mixed state represented in standard QM by the density operator

W =
∑

k∈N0

Tr[WψM
̂A†
ψkM

̂A
ψk]Wk =

∑

k∈N0

M
̂A
ψkWψM

̂A†
ψk . (26)

Let us suppose now, for the sake of simplicity, that the spectrum Ξ of ̂A is not only
discrete but also nondegenerate, and put |ψ〉 = ∑

k∈N
ck|ak〉 (where |ak〉 is the eigenvector

associated with the eigenvalue ak of ̂A). Then (26) yields

W = [1 − pd
ψ(̂A)]|ψ〉〈ψ | + pd

ψ(̂A)
∑

k∈N

P
̂A

k |ψ〉〈ψ |P ̂A
k

= [1 − pd
ψ(̂A)]|ψ〉〈ψ | + pd

ψ(̂A)
∑

k∈N

|ck|2|ak〉〈ak|. (27)

Equation (27) can be used to justify GPP in the special case of discrete generalized ob-
servables satisfying condition C by assuming a suitable evolution of the compound system
made up of the microscopic measured object and the macroscopic measuring apparatus. In-
deed, let us consider the apparatus measuring A0 as an individual example of a macroscopic
physical system ΩM associated with the Hilbert space HM . Let |1〉, . . . , |k〉, . . . be the unit
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vectors of HM representing the macroscopic states of ΩM which correspond to the outcomes
a1, . . . , ak, . . . , respectively. Moreover, let us introduce the unit vector |0〉 which represents
the macroscopic state of the apparatus when it is ready to perform a measurement or when
the physical object x is not detected. Finally, let us assume that {|0〉, |1〉, . . . , |k〉, . . .} is an
orthonormal basis in HM . Let S0 be the initial state of the compound system made up of the
physical object x plus the macroscopic apparatus, represented by the unit vector |ψ〉|0〉, and
let us assume the following (generally nonlinear, hence nonunitary5) time evolution of the
compound system

|ψ〉|0〉 = ∑

k∈N
ck|ak〉|0〉 −−−−→ αψ

∑

k∈N
ck|ak〉|k〉 + βψ |ψ〉|0〉, (28)

where, for every unit vector |ψ〉, αψ,βψ ∈ C and αψ =
√

pd
ψ(̂A)eiθψ , βψ =

√

1 − pd
ψ(̂A)eiϕψ ,

hence |αψ |2 + |βψ |2 = 1.
Let us now consider the density operator WC associated with the final state of the com-

pound system after the interaction. WC can be written as

WC =
(

αψ

∑

k∈N

ck|ak〉|k〉 + βψ |ψ〉|0〉
)(

α∗
ψ

∑

l∈N

c∗
l 〈al |〈l| + β∗

ψ 〈ψ |〈0|
)

= |αψ |2
∑

k,l∈N

ckc
∗
l |ak〉〈al | ⊗ |k〉〈l| + αψβ∗

ψ

∑

k∈N

ck|ak〉〈ψ | ⊗ |k〉〈0|

+ α∗
ψβψ

∑

l∈N

c∗
l |ψ〉〈al | ⊗ |0〉〈l| + |βψ |2|ψ〉〈ψ | ⊗ |0〉〈0|. (29)

The final state of the measured physical object x can be represented in standard QM by the
density operator obtained by performing the partial trace of WC with respect to HM ,

TrM WC = [1 − pd
ψ(̂A)]|ψ〉〈ψ | + pd

ψ(̂A)
∑

k∈N

|ck|2|ak〉〈ak|. (30)

The second term of (30) coincides with the second term of (27), which provides the desired
justification of GPP.

It is important to observe that also the interpretations of the two descriptions provided by
(27) and (30) coincide. Indeed, because of objectivity of physical properties, all probabilities
in (30) are epistemic according to the ESR model, exactly as the probabilities in (27), which
does not occur in QM or its unsharp extension [14–16].
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